Article 13221

Title of the article

The features of parodentium’s microcirculation in various systemic diseases (a literature review) 

Authors

Evgeny A. Stepanov, Postgraduate student, Medical Institute, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: stepanow.evgenyi95@mail.ru
Lyudmila V. Kurashvili, Doctor of medical sciences, professor of the sub-department of human physiology, Medical Institute, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: meidpgumi@yandex.ru
Nadezhda I. Mikulyak, Doctor of medical sciences, head of the sub-department of human physiology, Medical Institute, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: normphys@mail.ru
Yakov P. Moiseev, Student, Medical Institute, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: normphys@mail.ru
Aleksandr S. Kinzirskiy, Professor of the labarotary of neurochemistry, Institute of Physiologically Active Substances of the Russian Academy of Sciences (1 Severny lane, Chernogolovka, Moscow region, Russia), E-mail: akinz@inbox.ru 

Index UDK

616-092.11 

DOI

10.21685/2072-3032-2021-2-13 

Abstract

A large percentage of infectious diseases observed in humans are accompanied by inflammation of the gums, they suffer from the connective tissue’s structure and the root tissue around the teeth. This is accompanied by the loss of functional units of the dentition. In the last decade, more and more attention has been paid to the relationship between periodontal disease and the development of systemic diseases. Many systemic disorders can lead to an increase in the prevalence, frequency, or severity of periodontal disease. Endogenous intoxication of the body can be the primary cause of parodentium changes. Inflammation is the main symptom of parodentium disease, but the host’s immune response to parodentium pathogens is very important and can lead to differences in the severity of parodentium disease. Pathogens and their products, as well as inflammatory mediators produced in the parodentium tissues, can enter the bloodstream and then into various tissues and thereby contribute to the development of systemic diseases. It is very difficult to prove the relationship of systemic diseases with parodentium pathology, more precisely, very often it is not possible to find a connecting mechanism between them. However, a number of studies have established a direct relationship between systemic pathology and parodentium lesions. The work summarizes the literature data on the state of parodentium microcirculation against the background of microbial imbalance in a particular pathology. 

Key words

parodentium, cardiovascular diseases, microcirculation, parodentium pathogens, inflammation 

Download PDF
References

1. Vidal F., Cordovil I., Figueredo C.M.S. [et al.]. Non-surgical treatment reduces cardiovascular risk in refractory hypertensive patients: a pilot study. Journal of Clinical Periodontology. 2013;40(7):681–687.
2. Elter J.R., Hinderliter A.L., Offenbacher S. [et al.]. The effects of periodontal therapy on vascular endothelial function: a pilot trial. American Heart Journal. 2006;151(47):e1–e6.
3. Wang H., Naghavi M., Allen C., Barber R.M. [et al.]. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459-544.
4. Salomon J.A., Wang H., Freeman M.K., Vos T. [et al.]. Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet. 2012;380(9859):2144-262.
5. Gorshunova N.K. (ed.). Sovremennye strategii i tekhnologii profilaktiki, diagnostiki, lecheniya i reabilitatsii bol'nykh raznogo vozrasta, stradayushchikh khronicheskimi neinfektsionnymizabolevaniyami: sb. materialov mezhdunar. nauch.-prakt. konf. = Modern strategies and technologies for the prevention, diagnosis, treatment and rehabilitation of patients of different ages suffering from chronic non-infectious diseases: proceedings of an international scientific and practical conference. Kursk, 2018:274. (In Russ.)
6. Akker M. van den, Buntinx F., Metsemakers J.F., Roos S. [et al.]. Multimorbidity in general practice: prevalence, incidence, and determinants of co-occurring chronic and recurrent diseases. J. Clin Epidemiol. 1998;51(5):367–375.
7. Asfandiyarova N.S. Multiple chronic diseases. Klinicheskaya gerontologiya = Clinical gerontology. 2018;3-4:58–64. (In Russ.)
8. Linden G.J., Lyons A., Scannapieco F.A. Parodontal systemic associations: review of the evidence. Journal of Periodontology. 2013;40(14):8–19.
9. Borisova E.G. The features of periodontal disease with galvanosis of the oral cavity. Zdorov'e i obrazovanie v XXI veke = Health and education in the 21st century. 2018;20(5):50–54. (In Russ.)
10. Grudyanov A.I., Krechina E.K., Tkacheva O.N. [et al.]. Vzaimosvyaz' vospalitel'nykh zabolevaniy parodonta s serdechno-sosudistymi zabolevaniyami = Interrelation of inflammatory parodontal diseases with cardiovascular diseases. Moscow, 2018:46. (In Russ.)
11. Grudyanov A.I., Zorina O.A. Metody diagnostiki vospalitel'nykh zabolevaniy parodonta: rukovodstvo dlya vrachey = Diagnostic methods for inflammatory parodontal disease: a guide for physicians. Moscow: Meditsinskoe informatsionnoe agentstvo, 2009:112. (In Russ.)
12. Krechina E.K., Kozlov V.I., Maslova V.V. Mikrotsirkulyatsiya v tkanyakh desny parodonta: rukovodstvo = Microcirculation in the parodentium gum tissue: a guide. Moscow: Geotar Media, 2007:75. (In Russ.)
13. Sarkisyan G.N. The role of microcirculation in the pathogenesis of parodontal disease. Voprosy teoreticheskoy i klinicheskoy meditsiny = Issues of theoretical and clinical medicine. 2011;2:3. (In Russ.)
14. Moore J.P.R., Dyson A., Singer M. [et al.]. Microcirculatory dysfunction and resuscitation: why, when, and how. British Journal of Anaesthesia. 2015;115(3):366–375.
15. Davis M.J. Perspective: physiological role(s) of the vascular myogenic response. Microcirculation. 2012;19:99–114.
16. Jacob M., Chappell D. & Becker B.F. Regulation of blood flow and volume exchange across the microcirculation. Critical Care. 2016;20(319):13.
17. Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med. 2002;30:229–234.
18. Xu R.X., Huang K., Qin R., Huang J. [et al.]. Dual-mode Imaging of Cutaneous Tissue Oxygenationand Vascular Function. Journal of Visualized Experiments. 2010;46:8.
19. Garland C.J., Hiley C.R., Dora K.A. EDHF: spreading the influence of the endothelium. Br J Pharmacol. 2011;164:839–852.
20. Schmidt Harald H.H.W., Feelisch M. Red Blood Cell-Derived Nitric Oxide Bioactivity and Hypoxic Vasodilation. Circulation. 2019;139(23):2664–2667.
21. Zhongwei L., Dang Y., Cai H. [et al.]. Adenosine triphosphate-sensitive potassium channels and cardiomyopathies (Review). Molecular Medicine Reports. 2015;13:1447–1454.
22. Moore J.P.R., Dyson A., Singer M. [et al.]. Microcirculatory dysfunction and resuscitation: why, when, and how. BJA British Journal of Anaesthesia. 2015;115(3):366–375.
23. Poole D. Current concepts of oxygen transport during exercise. Equine and Comparative Exercise Physiology. 2007;1(1):5–22.
24. Honig C.R., Odoroff C.L., Frierson J.L. Active and passive capillary control in red muscle at rest and in exercise. Am J. Physiol. 1982;243:196–206.
25. den Uil C.A., Lagrand W.K., van der Ent M. [et al.]. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2010;31:3032–3039.
26. Fang X., Tang W., Sun S. [et al.]. Comparison of buccal microcirculation between septic and hemorrhagic shock. Crit Care Med. 2006;34:447–453.
27. Orekhova L.Yu., Gudkova A.Ya., Barmasheva A.A. The effect of chronic heart failure on the state of microcirculation in the oral cavity and the main indicators of dental health. Parodontologiya = Parodontics. 2010;2:70. (In Russ.)
28. Desvarieux M., Demmer R.T., Jacobs D.R.Jr. [et al.]. Periodontal bacteria and hypertension: the oral infections and vascular disease epidemiology study (INVEST). J. Hypertens. 2010;28(7):1413–1421.
29. Chickanna R., Prabhuji M., Nagarjuna M. Host-bacterial interplay in periodontal disease. J Int Clin Dent Res Organ. 2015;7:44–50.
30. Zimmer W., Wilson M., Marsh P.D. [et al.]. Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans in the Plaque of Children without Periodontitis. Microbial Ecology in Health and Disease. 2009;4(5):329–336.
31. Sanz M., Van Winkelhoff A.J. Periodontal infections: understanding the complexity—consensus of the Seventh European Workshop on Periodontology. Journal of Clinical Periodontology. 2011;38(11):3–6.
32. Panagakos F., Scannapieco F. Periodontal inflammation: from gingivitis to systemic disease?” Gingival Diseases: Their Aetiology. Prevention and Treatment. 2011:155–168.
33. Passoja A., Puijola I., Knuuttila M. [et al.]. Serum levels of interleukin-10 and tumour necrosis factor-α in chronic periodontitis. Journal of Clinical Periodontology. 2010;37(10):881–887.
34. Soory M. Chronic periodontitis as a risk marker for systemic diseases with reference to cardiometabolic disorders: common pathways in their progression. Immunology and Immunogenetics Insights. 2010;2:7–21.
35. Abbas M.A., Guenther A., Galantucci A., Fawi G. [et al.]. Microbial Risk Factors of Cardiovascular and Cerebrovascular Diseases:Potential Therapeutical Options. The Open Neurology Journal. 2008;2:20–24.
36. Grudyanov A.I., Tkacheva O.N., Avraamova T.V. [et al.]. Issues of the relationship between inflammatory parodontal diseases and cardiovascular pathology. Stomatologiya = Dentistry. 2015;94(3):50–55. (In Russ.)
37. Lockhart P.B., Bolger A.F., Papapanou P.N. [et al.]. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association? A scientific statement from the american heart association. Circulation. 2012;125(20):2520–2544.
38. Xin-Fang Leong, Chun-Yi Ng., Baharin Badiah [et al.]. Association between Hypertension and Periodontitis: Possible Mechanisms. Hindawi Publishing Corporation The Scientific World Journal. 2014;1:11.
39. Ekuni D., Tomofuji T., Tamaki N. [et al.]. Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis. Archives of Oral Biology. 2008;53(4):324–329.
40. Leong X.F., Ng C.Y., Badiah B. [et al.]. Association between Hypertension and Periodontitis: Possible Mechanisms. The Scientific World Journal. 2014;1:11.
41. Yusupalikhodjaeva S.H., Bekjanova O.E. Pathogenetic aspects of treatment of periodontitis associated with Candida infection in patients with diabetes mellitus. European science review. 2016;1-2:134–135.
42. Tóthová L. and Celec P. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis. Front. Physiol. 2017;8:1055.
43. Tomofuji T., Azuma T., Kusano H. [et al.]. Oxidative damage of periodontal tissue in the rat periodontitis model: effects of a high-cholesterol diet. FEBS Letters. 2006;580(15):3601–3604.
44. Ekuni D., Tomofuji T., Tamaki N. [et al.]. Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis. Archives of Oral Biology. 2008;53(4):324–329.
45. Xin-Fang Leong, Chun-Yi Ng., Baharin Badiah [et al.]. Association between Hypertension and Periodontitis: Possible Mechanisms. Hindawi Publishing Corporation The Scientific World Journal. 2014;1:11.
46. Sies H. Stress: Physiology, Biochemistry, and Pathology. Chapter 13 - Oxidative Stress: Eustress and Distress in Redox Homeostasis. Handbook of Stress Series. 2019;3:153–163.
47. Bullon P., Cordero M.D., Quiles J.L. [et al.]. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis. Free Radical Biology and Medicine. 2011;50(10):1336–1343.
48. Patil S.B., Kodliwadmath M.V., Kodliwadmath S.M. Correlation between lipid peroxidation and non-enzymatic antioxidants in pregnancy induced hypertension. Indian Journal of Clinical Biochemistry. 2008;23(1):45–48.
49. Gray C., Li M., Reynolds C.M. [et al.]. Pre-weaning growth hormone treatment reverse hypertension and endothelial dysfunction in adult male offspring of mothers undernourished during pregnancy. PLoS One. 2013;8(1):1–9.
50. Ong S.L.H., Whitworth J.A. How do glucocorticoids cause hypertension: role of nitric oxide deficiency, oxidative stress, and eicosanoids. Endocrinology and Metabolism Clinics of North America. 2011;40(2):393–407.
51. Cinelli M.A., Do H.T., Miley G.P. [et al.]. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicinal Research Reviews. 2020;40(1):158–189.
52. Kim Y.W., West X.Z., Byzova T.V. [et al.]. Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med. 2013;91:323–328.
53. Seinost G., Wimmer G., Skerget M. [et al.]. Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis. American Heart Journal. 2005;149(6):1050–1054.
54. Higashi Y., Goto C., Hidaka T. [et al.]. Oral infection-inflammatory pathway, periodontitis, is a risk factor for endothelial dysfunction in patients with coronary artery disease. Atherosclerosis. 2009;206(2):604–610.
55. Shet Uttom K., Oh Hee-Kyun, Kim Hye-Jeong [et al.]. Quantitative analysis of periodontal pathogens present in the saliva of geriatric subjects. J. Periodontal Implant Sci. 2013;43:183–190.
56. Nickles K., Scharf S., Röllke L. [et al.]. Detection of subgingival periodontal pathogenscomparison of two sampling strategies. Clinical Oral Investigations. 2015;20:571–579.

 

Дата создания: 24.08.2021 15:03
Дата обновления: 27.08.2021 12:41